Project X Instrumentation R&D at HINS

Vic Scarpine
Project X Collaboration Meeting
September 8-9, 2010

Outline

- Motivation
- HINS Parameters
- HINS Measurements to Date
- Beam Diagnostic Projects
- Collaborations
- Goals and Timelines
- Conclusions

Motivation

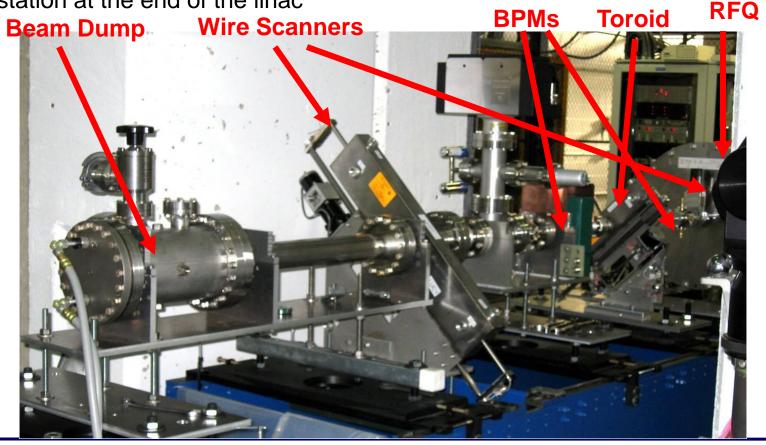
- HINS (High Intensity Neutrino Source) is a unique Linac Injector R&D facility
 - Outside of HINS, regular access to high-intensity, low-energy H- beam for R&D is limited
- Potential exists to operate HINS as a low-energy, high-intensity Htest facility during Project X R&D phase
 - Allows for the development of Fermilab projects as well as a facility for external collaborators
 - An accessible test facility is critical for a number of Project-X R&D areas
- Potential project areas:
 - Beam diagnostics R&D
 - Beam dynamics at low-energy
 - Beam chopper R&D
 - Low-energy material studies

HINS Beam Parameters

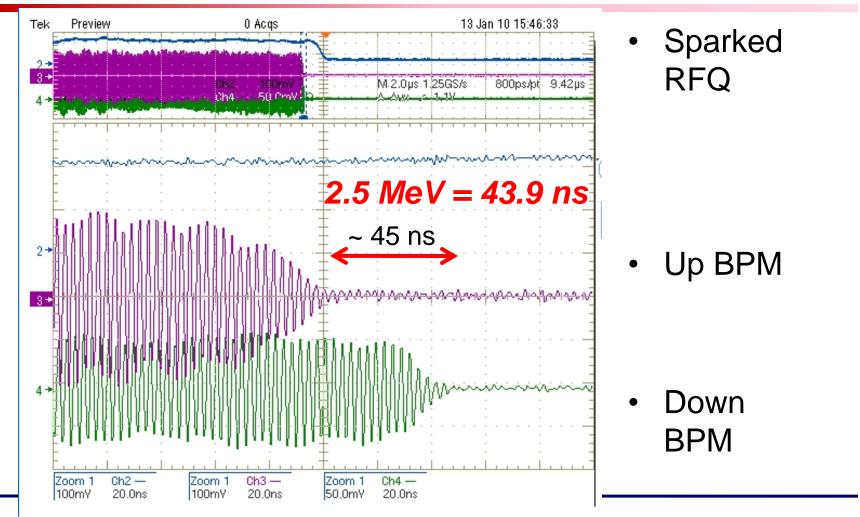
Particle	H+ then H-	
Nominal Bunch Frequency/Spacing	325 3.1	MHz nsec
Particles per Pulse	37.5 *	E13
Pulse Length	3/1	msec
Average Pulse Current	~ 20	mA
Pulse Rep. Rate	2.5/10	Hz
Bunch Current	32	mA
Bunch Intensity	6.1 98	E8 pCoul

^{*} full un-chopped 3 msec pulse at klystron-limited 20 mA

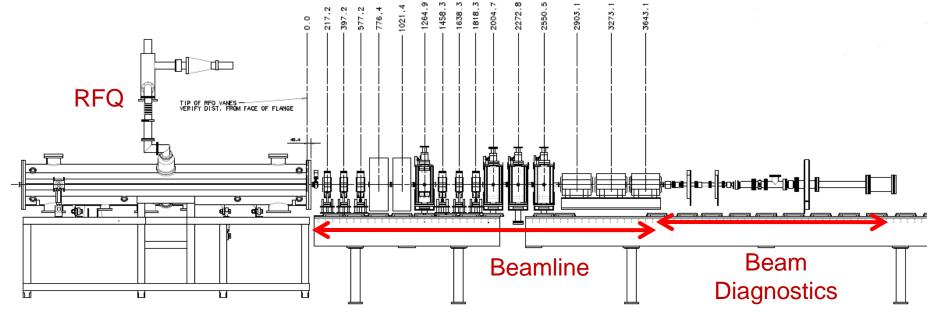
HINS RFQ Beam Results


- First proton beam through RFQ in Spring 2010
- Beam parameters:
 - Ion source (protons): 500 usec @ 1 Hz
 - RF: 50 usec @ 0.5 Hz
 - RFQ operated without cooling
- Ion Source Toriod ~ 15-20 ma
 - <50%?? protons; >50%?? other (H2+, H3+)
 - Ion source species are being measured
- RFQ Output Toriod Current ~ 3-4 ma
 - Possible beam loss after RFQ but before toroid
- Basic diagnostics line to make transverse profiles and energy measurements

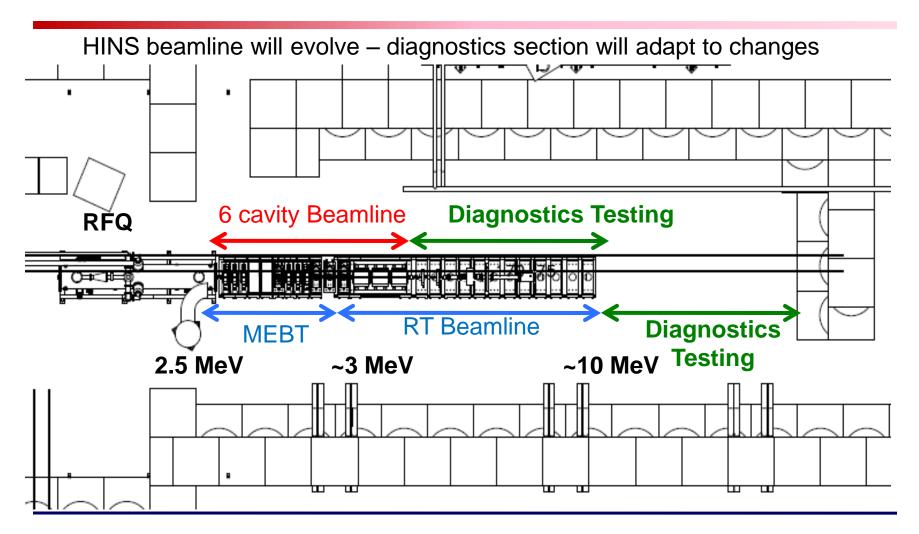
Project X Movable Beam Diagnostics


The HINS linac is equipped with a reconfigurable, movable diagnostics station at the end of the linac

RFQ Beam Energy – Time of Flight



Upcoming 6-Cavity Test


- To test vector modulator concept
- Two buncher cavities Quadrupole focusing instead of superconducting solenoids
- ~2.7 to 3.0 MeV protons
- Diagnostic line primarily for beam evaluation / phase evaluation

HINS Cave Layout

Beam Diagnostic Projects for Project X

- Transverse Diagnostics
 - Laser Transverse Profile Monitor* previous collaboration with BNL
 - Ionization Profile Monitors
 - Electron Wire Transverse Profile Monitor
- Longitudinal Diagnostics
 - Wire Longitudinal Profile Monitor*
 - Laser Longitudinal Profile Monitor* collaboration with LBNL
 - Broadband Faraday-cup* collaboration with SNS
- Halo Monitoring transverse and longitudinal
 - Vibrating wire* from Bergoz Instrumentation
 - Laser wire*
- MEBT Emittance station
 - Slit-collector*
 - Laser Slit*

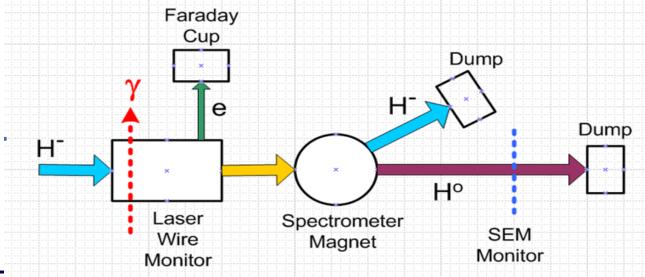
^{*} Project X related instrumentation to be tested at HINS

Project X Collaborations

- Project X Collaboration Initiative (November 2008):
 - Present beam instrumentation collaboration projects with SNS, LBNL, and SLAC
- SNS
 - Various advanced diagnostics systems (broadband Faraday-cup, ebeam scanner, MEBT beam instrumentation, laser wires, etc.)
 - Support, information exchange, R&D help, visits, reviews, etc.,
- LBNL
 - Development of a mode-locked fiber laser system for longitudinal bunch profile measurements (also bunch tails), distribution of laser light with fiber optics
 - see LBNL talk by Bryd & Wilcox
 - Critical to use HINS at testing facility
- Others?

Basic Transverse Laser Profile Monitor (LPM)

- Profile measurements difficult in intense H- beams
 - Wire dangerous near superconducting cavities
- Use narrow laser to ionize H- and measure profile
 - H⁻ + photon -> H⁰ + e-
 - Collect electrons or measure reduction of H- current
- Collaboration formed between FNAL and BNL to produce LPM for HINS
 - Other groups, such as SNS, have also produced LPMs
- LPM demonstrated at BNL with beam and delivered to FNAL in summer of 2008
- Unit redesigned at FNAL and installed at end of FNAL Linac during summer 2009 shutdown – 400 MeV H-
 - Laser suffered radiation damage repaired this past shutdown
- Studies of LPM in Linac
- Integration into HINS after H- source arrival at HINS



Laser Transverse Emittance Monitor

- Best method to measure emittance when space charge effects are large is to use a scanning slit or pepper pot method
 - A low-energy, high-intensity beam may damage/destroy material in beam
 - Use a non-intercepting method to block beam laser
- Scan laser across bunch to act as a virtual slit to convert H- to H^o
- Collect electron to measure intensity in slit → x

Measure angular distribution of H^o → x'

Goals and Timelines

• FY10

- Continue laser diagnostics collaboration with LBNL, and instrumentation collaboration with SNS.
- Setup and commissioning of HINS basic beam instruments, e.g. beam intensity, orbit, phase, etc.
- Focus on Project X mission critical RD&D projects, e.g. laserwire, MEBT instrumentation, halo measurements, beam loss monitoring, and more.
 - Construct prototype systems

• FY11

- Install and test prototypes at HINS
- Install H- source at HINS

• FY12

- Summarize operation experience on prototypes
- Finalize design and development activities

Conclusion

- HINS beamline construction pathway gives an opportunity for proton and H- beam diagnostics development
 - 2.5-3.0 MeV H-
 - 10 MeV H-
- Low-energy Project X beam diagnostics R&D can be performed using the HINS pulsed beam format
- HINS can provide a unique and critical test facility for low-energy high-intensity proton and H- that is not readily available outside of Fermilab
- Operating HINS as a test facility, even after HINS goals are meet, is advantagous to Project X beam diagnostic instrumentation R&D phase